Сварка титана — описание технологии и пошаговая инструкция

Содержание
  1. Общая информация
  2. Специфические свойства металла
  3. Основные способы сварки титана
  4. Используемые для сварки титана методики
  5. Особенности сварки титана
  6. Сварка титана (сплавов) аргоном
  7. Подготовка свариваемых образцов (кромок)
  8. Что можно использовать:
  9. Критерии оценки качества подготовки
  10. Проволока
  11. Горелка
  12. Как выполняется автоматическая сварка титана
  13. Какие возникают сложности при сварке титана и его сплавов
  14. Особенности холодной сварки
  15. Особенности ручного метода сварки
  16. Необходимые электроды
  17. Рекомендации специалистов
  18. Электрошлаковая сварка
  19. Ручная дуговая сварка
  20. Подготовка к сварке в домашних условиях
  21. Нюансы ручного режима сварки титана в аргоне
  22. Возможные дефекты при сварке титана аргоном и способы их устранения
  23. Необходимые материалы и оборудование для сварки титановой лопаты
  24. Какие еще виды сварки подходят для титана помимо аргона
  25. Контактная сварка
  26. Подготовка металла к сварочной операции
  27. Общие сведения о способах сварки
  28. Свойства материала
  29. Общая технология сварки аргоном
  30. Как правильно подготовить детали для сварки титана аргоном
  31. Электронно-лучевая сварка

Общая информация

Не зная свойств и особенностей металла и его сплавов, понять все нюансы сварки достаточно сложно.

  • Плотность титана (г/см³) – 4,51.
  • Прочность (МПа): металла – в пределах 267 – 337, сплавов – до 1 230.
  • Температура плавления (ºС): 1668.

Специфические свойства металла

  • Способность титана к самовозгоранию в кислородной среде.
  • Низкая теплопроводность.
  • Превышение значения температуры более 400 ºС инициирует активность металла.
  • Титан интенсивно поглощает водород и бурно реагирует на контакт с азотом.
  • Под воздействием углекислого газа, паров воды быстро окисляется.

t-2

Кроме этого, необходимо учитывать и то, что металл может находиться в одной из двух стабильных фаз, которые обозначают латинскими буквами α и β. Чем они характеризуются?

  • Фаза α – в таком состоянии титан находится при температуре окружающей среды. Структура – мелкозернистая, и металл полностью инертен к скорости охлаждения.
  • Фаза β – в такое состояние титан переходит при температуре от 880 ºС. Зерно становится крупнее, и появляется чувствительность к охлаждению (скорости процесса).

Указанные фазы можно стабилизировать, введя в металл определенные добавки и легирующие элементы – O, N, Al (для α) или V, Cr, Mn (для β). Поэтому титановые сплавы, в зависимости от вида присадок, делятся на группы:

  •  ВТ1 – ВТ5.1  Их называют α – сплавы. Обладают пластичностью, хорошо свариваются, однако термообработка не повышает их прочность.
  •  ВТ 15 – 22.  Группа β – сплавов свариваются намного хуже, причем возможно появление холодных трещин. Размеры зерен структуры при этом увеличиваются, а это отражается на качестве соединения сегментов в худшую сторону. Плюс в том, что термообработка частично повышает прочность сплава.
  •  ВТ4 – 8, ОТ4.  Группа α + β, по сути, промежуточное звено. Свойства таких сплавов во многом определяются видом и процентным содержанием введенных добавок.

t-3

Сам по себе титан (в чистом виде) практически не используется. Причина – недостаточная прочность. Поэтому говоря о его сварке, всегда подразумевается, что речь идет о каком-либо сплаве. То есть металл + легирующий элемент.

Основные способы сварки титана

Не все распространенные технологии применимы к этому металлу и его сплавам. Главная причина – химическая активность титана. Попадание в рабочую зону инородных соединений (нитридов, оксидов, карбидов) резко снижают качество шва.

Используемые для сварки титана методики

  • Дуговым флюсом.
  • Холодная.
  • Электронным лучом (плазменно-дуговая).
  • В среде аргона. Наиболее популярный вариант, хотя есть и некоторые другие.

Особенности сварки титана

  • Высокая скорость технологической операции. Это связано с тем, что длительное термическое воздействие на отдельном участке приводит к изменению структуры материала из-за увеличения размера зерен. Как следствие – металл становится ломким (хрупким).
  • Полная изоляция от атмосферы. Причем не только рабочей зоны (сварочной ванны), но и тех участков, которые разогреваются до +625 (и более) ºС.

svarka

Сварка титана (сплавов) аргоном

Преимущества:

  • Высокое качество сварного соединения.
  • Работа на малых токах. Следовательно, можно сваривать детали небольшой толщины (тонкостенные), так как вероятность прожога практически исключена.
  • Возможность наращивания объема детали на дефектных участках (например, в местах образования раковин).
  • Получение шва с любыми параметрами, что позволяет обрабатывать (соединять) как крупногабаритные образцы, так и сравнительно мелкие.

Подготовка свариваемых образцов (кромок)

Механическая обработка и обезжиривание, при необходимости – травление кислотой. Задача – полное удаление пленки оксидов примерно на 20 мм от подлежащих соединению кромок. Специфика в том, что вся работа должна проводиться в защитных перчатках (рукавицах). Касание деталей руками недопустимо из-за возможного загрязнения сплава.

Если механической очистки недостаточно, то прибегают к газокислородной (с помощью горелки).

Что можно использовать:

  • Наждачная бумага.
  • Шаберы.
  • Щетки металлические с проволокой из «нержавейки» сечением 0,25 (±5) мм или иные подходящие приспособления (абразивные материалы).
  • Раствор фтора, кислота соляная (подогретые до 60 – 65 ºС).

Критерии оценки качества подготовки

  • Отсутствие на образце заусениц, трещин, вкраплений и так далее.
  • Ровный серебристый оттенок титанового сплава.

Проволока

Она выбирается в соответствии с группой сплава, подлежащего сварке (см. выше). На бирке (или упаковке) обязательно есть необходимая информация, так как вся продукция маркируется.

Что учестьПеред применением проволока зачищается (если необходимо, шкуркой не выше № 12) и обезжиривается. Ее можно готовить и заранее, но в этом случае она герметизируется (например, заворачивается в п/э) и помещается в плотно закрывающийся пенал (тубу). Но хранение в таких условиях – не более 5 суток.

Горелка

Для сварки титана любая не подходит. Используются модели с соплом из керамики и специальной (газовой) линзой.

Как выполняется автоматическая сварка титана

Для этого используется вольфрамовый электрод. Причем размер отверстий сварочной горелки должен находиться в пределах 12 – 15 мм. Также нужно учесть, что соединение неплавящимся электродом лучше проводить постоянным током прямой полярности.

Высокая активность титана вынуждает зажигать и гасить горелку на специальных планках, вне изделия. Как и при ручной технологии, газ подают еще 1 минуту после гашения дуги, защищая шов и переходную зону от окисления. Далее представлены режимы для автоматической сварки титана аргоном в защитных газах и под флюсом:

Толщина металла, мм

Диаметр вольфрамового электрода, мм

Напряжение, В

Сила тока, А

Скорость сварки, м/ч

Расход аргона, л/мин

В горелке

В подкладке с обратной стороны шва

0,8

1,0 – 1,5

8 – 10

45 – 55

18 – 25

6 – 8

3 – 4

1,0

1,5

10 – 12

50 – 60

18 – 22

6 – 8

3 – 4

1,2

1,5

10 – 12

55 – 65

18 – 22

6 – 8

3 – 4

1,5

1,5

11 – 13

70 – 90

18 – 22

9

3 – 4

1,8

1,5

11 – 13

80 – 100

18 – 22

9

3 – 4

2,0

1,5 – 2,0

11 – 13

110 – 130

18 – 22

9

3 – 4

2,5

2,0 – 2,5

11 – 13

150 – 180

20 – 22

9 – 12

3 – 4

3,0

2,5 – 3,0

12 – 13

200 – 220

20 – 22

9 – 12

3 – 4

Режимы работы под флюсом:

Толщина металла, мм

Тип соединения

Сила тока, А

Рабочее напряжение, В

Скорость сварки, м/ч

3 – 5

Стыковое

250 – 320

24 – 38

50

3 – 5

Угловое

250 – 300

32 – 36

40 – 50

2 – 3

Внахлест

250 – 300

30 – 35

40

Какие возникают сложности при сварке титана и его сплавов

Особенности сварки титана и его сплавов состоят в том, что данный процесс имеет некоторые сложности, которые делают этот процесс тяжелым. При нагревании сплавы с титаном начинают активно взаимодействовать с воздухом. При этом процесс данного взаимодействия может наступать задолго до достижения показателя температуры титана, а точнее уже при 450 градусах Цельсия.

Фото: сварка титановых труб

Сварка титановых труб и других изделий из данного металла может осложняться следующими процессами:

  • при взаимодействии титана с кислородом на поверхности свариваемой заготовки  начинается активный процесс образования оксида титана и окалины, а именно появляется альфированный слой. При возникновении слоя этого вида может вызвать образование трещин на поверхности свариваемого изделия. Чтобы этого избежать стоит выполнять определенные нормы, которые указывают на допустимое максимальное содержание кислорода — в любом сплаве из титанового металла оно должно быть не выше 0,015 %;
  • во время нагревания титановые сплавы усилено воздействуют с азотом. Если в составе сплава из титана будет превышен уровень азота, то этом может вызвать изменения физических свойств основы, а именно — прочность сплава станет намного выше, но вот свойства пластичности снизятся в несколько раз. Согласно существующим нормам наибольший показатель азота в составе сплава из титана должен составлять не больше 0,04-0,05 %;
  • самым вредным газом для титановых сплавов является водород. Если его содержание в составе металла будет составлять выше нормы, то это может вызвать сильную хрупкость, образование на поверхности трещин, больших пор. В норме водород в составе титановых сплавов должен быть не выше 0,01-0,15 %.

Особенности холодной сварки

Отсутствие термического воздействия, при котором наблюдаются, по сути, разрушительные процессы в структуре титана, делают этот способ почти идеальным, но и тут есть свои нюансы. Холодная сварка производится под высоким давлением, которое деформирует кристаллы структуры, в результате смещая их и образуя общий сплав. Непосредственно сварка производится внахлест с помощью специальных зажимных механизмов. Силовое механическое воздействия также отличает этот способ, что требует более высоких финансовых затрат. Есть и другой недостаток, которым характеризуется холодная сварка. Титан, в конструкции которого есть образованные такой спайкой швы, менее надежен и может задействоваться только в конструкциях, не предполагающих высокие физические нагрузки.

Особенности ручного метода сварки

Ручная сварка применяется для изготовления изделий в единственном числе или мелкими сериями, при выполнении работ большой сложности, с которыми автомат справиться не в состоянии. Ток выбирают около 100-140 А. Электрод нужно вести прямо, с наклоном вперед. Оборудование настраивается на постоянный ток. Зона сварки подвергается защите, которая не снимается в течение 1-2 минут после отключения тока. Цвет шва свидетельствует о его качестве: высокое – серебристый, низкое – синий или черный.
Ручная сварка

Необходимые электроды

Для сварки титановых сплавов используются электроды, изготовленные из вольфрама с добавками небольшого количества оксида лантана, который дает возможность увеличения тока на 50%, продлить срок службы и снизить степень загрязнения сварочной ванны. Конус изделия для снижения шероховатости полируется.

Используются изделия, имеющие сечение 12х60 мм. С их помощью получают шов высокого качества, близкий по составу к свариваемому материалу.

Рекомендации специалистов

Качество шва зависит не только от квалификации сварщика.

Большое влияние оказывают:

  • состав газа;
  • режим работы установки;
  • применяемый электрод.

Специалисты рекомендуют вместо гелия, имеющего большой расход, использовать аргон. Его затраты в 1,5-2 раза меньше, скорость обработки увеличивается.

При сварке крупных деталей лучше пользоваться током прямой полярности. Он более глубоко проплавляет металл. Листы толщиной до 2 мм следует соединять током обратной полярности, который дает малую глубину оплавления и не прожигает материал.

Заготовки необходимо правильно подготовить. Для удаления окисной пленки сплав обезжиривается на 20 см от шва.

Далее нужно протравить место работы составом:

  • соляная кислота – 35 частей;
  • вода – 65 ч;
  • фторид натрия – 50 г.

Раствор нагревается до 65-70°С и используется по назначению.

Механическую обработку делают стальной щеткой, наждачной бумагой №12. Все трещинки и заусенцы удаляются с поверхности. После этого можно начинать сварку.

Электрошлаковая сварка

сварка титан отзывы

Менее популярный метод, но он может быть эффективнее в работе с отдельными сплавами. Например, при сварке легированного 5-процентного титана с добавками алюминия и олова. В качестве силового источника применяется трехфазовый трансформатор, что свидетельствует о высоких нагрузках в процессе работы. Достаточно отметить силу тока при сварке толстых поковок – в среднем 1500-1600 А. Далее ход операции зависит от того, каким электродом плавится титан. Сварка титана электродом пластинчатого типа с размерами 12х60 мм обеспечивает оптимальное качество шва, который по характеристикам соответствует основной структуре заготовки. В обработке прессованных деталей часто используют такие же электроды, но с диаметром 8 мм. Это решение может показаться оправданным ввиду нетребовательности структуры металла, но прочностные качества шва будут понижены – в среднем 85% от показателя нетронутой структуры.

Ручная дуговая сварка

сварка титана аргоном

В процессе задействуется вольфрамовый электрод с подключением источника постоянного тока. Защите подвергается зона вокруг шва, корень шва и ближние затронутые термическим воздействием зоны. Изоляция обеспечивается козырьками, насадками и термически стойкими пористыми материалами, в которые подается газ. Подкладки желательно применять из меди или стали. Если производится обработка трубы, то газ пускается прямо в дуло. Что касается оптимального режима, то для 2-миллиметрового электрода сила тока может составлять порядка 90 А. Это начальный уровень для работы с заготовками толщиной 4-5 мм. Конкретные величины могут изменяться и в зависимости от того, каким образом легировался титан. Сварка титана выполняется на короткой дуге без колебательных манипуляций. Электрод наклоняется противоположно направлению его движения – то есть вперед углом. Резко завершать операцию нельзя. В целях предотвращения образования окислов все защитные приспособления остаются на прежних местах даже после отключения электродов.

Подготовка к сварке в домашних условиях

Чтобы подготовить металл к сварочным работам, необходимо провести обработку кромок участков, на которых будет проводиться процесс. Обязательно удаляют металлический слой с повышенным содержанием кислорода и азота. Присутствие этих частиц в рабочей области приведёт к ухудшению свойств образованного шва. Повысится хрупкость металла.

Если заготовки имеют толщину не более 4 мм, можно при сварке обойтись без разделки кромки. В остальных случаях она выполняется с соблюдением угла раскрытия равного 60 градусам.

Также необходимо защитить корень шва и рабочую область с обратной стороны. Даже если обработка не выходит на противоположную сторону. Ведь при взаимодействии титана и газов из окружающего воздуха начинается реакция, как только температура достигнет 300 градусов.

Для защиты шва с обратной стороны применяют подкладки из стали или меди. Их необходимо подогнать плотно. Также можно воспользоваться поддувом аргона, направляемым в специальные канавки или внутрь конструкции.

Если процесс допускается выполнять без защиты внутренней стороны швов, тогда необходимо делать перерывы, чтобы поверхность остыла. Сами швы должны быть короткими, не более 20 мм.

Нюансы ручного режима сварки титана в аргоне

Добиться прочного шва при сварке титана аргоном удается за счет обеспечения чистоты поверхности деталей и присадки. Другим обязательным условием является правильная настройка сварочного аппарата. При несоблюдении техники сварки аргоном на месте шва всегда появляются сварные дефекты. Прежде чем приступать к работе, выполните продувку и прочистку горелки, защитной насадки. Не забывайте про подкладки для обратной стороны шва – с их помощью можно проверить наличие воздуха в системе.

Сварка ведется без предварительного нагрева. Исключение составляют ситуации, когда возможна влажность, наличие конденсата на титане – тогда нужен нагрев до 70 °C.

При TIG-технологии рекомендуется высокочастотное зажигание для дуги. Когда вы работаете с присадкой, длина дуги равна 1 – 1,5 сечения электрода. Если сварка аргоном производится без присадки, этот параметр соответствует диаметру вольфрамового электрода. Помните, что в царапинах, образующихся на металле при касании вольфрамовых электродов, остаются частицы вольфрама. Когда все работы завершены, затухание дуги должно происходить постепенно, для этого плавно понижайте ток. Защиту сварного шва, околошовной зоны обеспечивают и после выключения дуги, когда температура опускается до 427 °C.

Технология сварки аргоном

При соединении аргоном тонкостенных деталей зазор между кромками должен составлять 0,5 – 1,5 мм. В этом случае можно не формировать кромки и отказаться от присадочной проволоки. Кстати, последняя должна совпадать по составу с основным свариваемым металлом.

Сварка титана аргоном предполагает такие режимы: если используется вольфрамовый электрод диаметром 1,5 – 2 мм и присадочная проволока диаметром 2 мм, а толщина свариваемых заготовок составляет 2 мм, нужно выдерживать ток 90 – 100 ампер. Повышение толщины металла до 4 мм позволяет варить его током в 120 – 140 ампер. И самое главное, о чем нужно помнить: для работы с титаном и его сплавами используется переменный ток постоянной полярности.

Также есть ряд других существенных условий для качественной сварки титана аргоном:

  • Для ручной технологии используется короткая дуга, не допускаются колебания электрода, присадки. Сварщик осуществляет движение вдоль шва.
  • Сваривание ведется углом вперед, то есть электрод должен быть направлен в сторону, противоположную направлению движения.
  • Угол между присадкой и электродом 90°.
  • Присадка подается в сварочную ванну непрерывно.
  • После гашения дуги защитный газ продолжает подаваться, обеспечивая охлаждение ниже 400 0С, в среднем на это уходит минута.

Условия для качественной сварки титана аргоном

Дальнейшее охлаждение металла является гарантией качественного шва. Вы можете определить это по цвету. В норме шов светлый, соломенный, желтый. А вот серый, синеватый или черный говорят об окислении, что плохо сказывается на качестве.

Технология сварки аргоном полуавтоматом или автоматом совпадает с ручной. Единственный нюанс, о котором нельзя забывать – отверстия в сопле горелки. В соответствии с ГОСТ их диаметр равен 12 – 15 мм. Зажигать и гасить горелку рекомендуется на специальных подкладках, планках.

Возможные дефекты при сварке титана аргоном и способы их устранения

Возможные дефекты при сварке титана аргоном и способы их устранения

Единственный способ избежать дефектов при соединении элементов из титана аргоном – это использование лазера, во всех остальных случаях возможны погрешности. ГОСТ определяет, что дефекты появляются вследствие несоблюдения технических условий, нарушения технологии, в результате чего конструкция становится непригодной к использованию.

Согласно ГОСТ, дефекты делятся на такие виды:

  • трещины;
  • поры;
  • твердые образования;
  • несплавления;
  • неправильный шов;
  • другие разновидности.

ГОСТ не допускает наличие трещин-разрывов в шве или прилегающих местах, поскольку они образуют центр разрушения.

Причина появления разрывов обычно кроется в высоком содержании углерода, никеля, водорода, фосфора в расплавленном металле. Сразу скажем, что при соединении лазером отсутствует вероятность образования трещин. Чтобы убрать появившиеся трещины, необходимо засверлить концы дефекта, после чего устранить трещину механическим путем и строжкой, зачистить и сварить участок.

Поры ГОСТ определяет как полости, заполненные газом. Вполне логично, что этот дефект образуется при сварке титана аргоном из-за высокого газообразования. Место с порами ослабляет всю конструкцию, поэтому его переваривают, перед этим зачистив механическим путем.

Твердыми включениями называют инородные металлические и неметаллические вещества, включенные в шов, снижающие его прочность и концентрирующие напряжение. Поэтому место с дефектом полностью вырубают, удаляют строжкой, заваривают.

Несплавления — это отсутствие соединения металла со швом, вызванное нерасплавлением части кромки стыка. Этот дефект может появиться при неправильном выборе формы угла или режима сварки, плохой предварительной обработке кромок. Поскольку несплавления отрицательно влияют на прочность шва, место дефекта вырубают, зачищают, после чего заваривают.

Нарушение формы представляет собой несовпадение формы шва с установленными требованиями. Такой недостаток появляется из-за скачков напряжения в сети, неправильного угла наклона, пр. Он может привести к внутренним дефектам шва, поэтому прибегают к завариванию места тонким швом электродом небольшого диаметра.

Необходимые материалы и оборудование для сварки титановой лопаты

Для процесса потребуется:

  1. Аппарат для сварки. Он должен поддерживать режим TIG. Обязательно наличие на нём горелки.
  2. Баллон, наполненный защитным газом. Подойдёт гелий, аргон или их смесь.
  3. Вольфрамовые электроды, которые не плавятся.
  4. Присадочная проволока.

Какие еще виды сварки подходят для титана помимо аргона

    1. Электрошлаковая сварка

      В последнее время этот вид соединения элементов из титана активно применяется в промышленности. Например, он используется для сплава ВТ5-1, то есть титана, легированного до 5 % алюминием и до 3 % оловом. Изготовление сплава производится прессованием с прокаткой до тонких листов, или ковкой заготовок с большим сечением.

      Метод, используемый для крупных сечений, считается очень сложным, но он вполне подходит для электрошлаковой сварки под флюсом АН-Т2 в аргоне. Роль источника переменного тока играет трехфазный трансформатор с жесткой характеристикой.

      Для работы с небольшими поковками (60х60 мм) рекомендуются режимы: сила тока 1600 – 1800 А, напряжение дуги 14 – 16 В. В норме расстояние между кромками поковок равно 26 мм, масса засыпанного флюса – 130 г, расход аргона 8 л/мин.

      Применение пластинчатого электрода размером 12х60 мм при этих режимах позволяет добиться стабильного процесса и прочного сварного шва. Последний сравним по прочности с основным металлом.

      При соединении прессованных профилей крупного сечения электродом толщиной 8 мм получается сварное соединение несколько худшей прочности – 80 – 85 % от показателя основного металла. Эта особенность вызвана использованием пластинчатых электродов из нелегированного сплава ВТ1-1. Поясним, что не рекомендуется работать с легированными электродными сплавами, ведь они не обеспечивают необходимой пластичности соединения из-за большого содержания газов в прессованном металле.

    2. Контактная сварка

      ГОСТ допускает использование данной технологии, так как оптимальная скорость сваривания титана равна 2 – 2,5 мм/сек. Ее превышение повлечет за собой снижение прочности металла, заполняющего зазор. Отметим, что данный показатель очень важен, когда работа идет контактным методом, ведь все операции здесь производятся очень быстро. Не стоит зачищать свариваемые кромки, а тем более фрезеровать их.

      На практике используются несколько вариантов контактного метода, и все они подходят для работы с титановыми заготовками. А именно речь идет о точечной, линейной и конденсаторной технологии. Для каждой из них подбирают свой режим, который зависит от толщины свариваемых заготовок, давления и диаметра электродов или от габаритов сварочной пластины, времени сжатия, продолжительности прохождения тока через металл. Как вы поняли, этот процесс требует грамотного подбора всех вышеперечисленных параметров.

      Далее вы можете ознакомиться с ориентировочными режимами стыковой сварки титана при начальной скорости оплавления 0,5 мм/сек:

      Площадь свариваемого сечения, мм

      Давление осадки, МН/М2

      Вылет заготовки из электродов, мм

      Припуск, мм на

      Скорость оплавления, мм/сек

      Сила тока оплавления, А

      оплавление

      осадку

      150

      2,9

      менее 25

      8

      3

      6

      1,5 – 2,0

      250

      4,9 – 7,8

      25-40

      10

      6

      6

      2,5 – 3,0

      500

      9,8 – 14,7

      45

      10

      6

      6

      5,0 – 7,0

      1000

      20 – 24

      50

      12

      10

      5

      5

      1500

      29 – 59

      60

      15

      10

      5

      7,5

      2000

      39 – 98

      65

      18

      12

      5

      10

      2500

      49 – 147

      70

      20

      12

      5

      12,5

      3000

      98 – 196

      100

      22

      14

      4

      15,0

      4000

      147 – 294

      110

      24

      15

      4

      20,0

      5000

      196 – 392

      130

      26

      15

      3,5

      25,0

      6000

      343 – 490

      140

      28

      15

      3,5

      30,0

      7000

      294 – 490

      150

      30

      15

      3,0

      35,0

      8000

      343 – 588

      165

      35

      15

      3,0

      40,0

      9000

      441 – 882

      180

      40

      15

      2,5

      45,0

      10000

      490 – 981

      180-200

      40

      15

      2,5

      50,0

      Для соединения титановых листов и пластин толщиной до 4 мм подходит точечная и шовная (роликовая) сварка. Высота литого ядра составляет 80 – 90 % от суммарной толщины листов. Ниже представлены приблизительные режимы этого вида обработки:

      Толщина листов, мм

      Диаметр контактной поверхности электрода, МН/м2

      Усилие на электродах, Н

      Продолжительность прохождения тока, с

      Время сжатия деталей, с

      Сила тока, А

      0,8

      4,0 – 4,5

      1960-2450

      0,1 – 0,15

      0,1

      7000

      1,0

      4,5 – 5,0

      2450 – 2950

      0,15 – 0,2

      0,3

      8000

      1,2

      5,0 – 5,5

      3150 – 3440

      0,2 – 0,25

      0,3

      8500

      1,5

      5,5 – 6,0

      3935 – 4915

      0,25 – 0,3

      0,4

      9000

      2,0

      6,0 – 7,0

      4915 – 5895

      0,25 – 0,3

      0,4

      10000

      2,5

      7,0 – 8,0

      5895 – 6875

      0,3 – 0,4

      0,4

      12000

      Режимы шовной (роликовой) технологии:

      Толщина листов, мм

      Ширина шва, мм

      Усилие на роликах, Н

      Продолжительность сварки, с

      Скорость сварки, м/мин

      Сила тока, А

      импульс

      пауза

      0,8+0,8

      3,5 – 4,0

      2950

      0,1 – 0,12

      0,18 – 0,20

      0,8 – 1,0

      6000

      1,0+1,0

      4,5 – 5,5

      3935

      0,14 – 0,16

      0,24 – 0,28

      0,6 – 0,8

      7500

      1,5+1,5

      5,5 – 6,5

      4915

      0,20 – 0,24

      0,3 – 0,4

      0,5 – 0,6

      10000

      2,0+2,0

      6,5 – 7,5

      6385

      0,24 – 0,28

      0,4 – 0,5

      0,4 – 0,5

      12000

      2,5+2,5

      7,0 – 8,0

      7855

      0,28 – 0,32

      0,6 – 0,8

      0,3 – 0,4

      15000

      Трубы из титана марки ВТ1-2, диаметром 10 – 23 мм и со стенкой толщиной 1,0 – 1,5 мм можно сваривать при помощи конденсаторной стыковой технологии без использования газовой защиты. Перед этим, напомним, осуществляют травление сварных кромок и работают с такими режимами:

      Диаметр трубы, мм

      Емкость, мкф

      Зарядное напряжение, В

      Усилие осадки, Н

      Вылет трубы из вкладышей, мм

      Коэффициент трансформации

      10х1

      5000

      850 – 900

      8935 – 9805

      1,0 – 1,5

      84

      23х1,5

      7000

      2000 – 2100

      22565 – 24035

      1,2 – 1,8

      84

      Оптимальным для труб диаметром 10 мм считается вылет 1 – 1,5 мм, тогда как для труб диаметром 23 мм этот показатель составляет 1,2 – 1,8 мм. При вылете труб менее 0,8 мм происходит выплеск расплавленного металла, а при превышении границы в 2,2 мм смещаются торцы, получается непровар. При усилии осадки менее 20,7 кН тоже получается непровар. Также он возможен при зарядном напряжении менее чем 1900 В, а при напряжении выше 2200 В выплескивается жидкий металл. Оплавление происходит внутри трубы в виде венчика высотой до 1,5 мм и максимальной толщиной 0,3 мм.

    3. Холодная сварка титана

      Эта технология предполагает разрушение кристаллической решетки и образование новой за счет соединения слоев титана, процесс происходит в твердом состоянии на открытом воздухе.

      Отдельно стоит сказать о работе с белым титаном, поскольку такая сварка ведется под давлением без внешнего нагрева. Соответствующая инструкция позволяет пользоваться технологией при любой температуре воздуха.

      При приложении нормальных усилий данный способ соединения титановых листов производится внахлест при помощи зажимов для фиксации. Далее можно приступать к сварочному процессу. После снятия зажимов листы деформируются и прочно скрепляются между собой.

Контактная сварка

Чем еще можно сваривать титан и его сплавы? Для сварки деталей из этого металла может применяться контактный способ. Согласно нормам ГОСТа данный метод разрешается использовать для титана, потому что оптимальный показатель скорости сваривания титановых сплавов равен 2-2,5 мм в секунду.

Не желательно превышать установленную скорость, потому что это может негативно отразиться на прочности сварного шва. При этом этот показатель особенно важен при использовании контактной сварки, потому что она выполняется очень быстро. Свариваемые кромки не нужно защищать и фрезеровать.

Контактная сварка может выполнять разными методами:

  • точечным;
  • линейным;
  • конденсаторным.

При этом стоит обращать внимание, что каждый метод подбирается индивидуально. Он может зависеть от уровня толщины заготовок, от степени давления электродов, от их диаметра, от размера толщины и длины свариваемой пластины, от периода сжатия, от времени прохождения тока через металлическое изделие.

Любой метод сварки титана имеет важные особенности и требования, от которых зависит прочность сварного шва. Если сваривание производится в условиях большого предприятия, то обязательно выполняется УЗК сварного шва титановой трубы, которое позволяет определить степень прочности соединения. Если она будет низкая, то это может негативно отразится на всей конструкции.

Подготовка металла к сварочной операции

Перед операцией титан необходимо соответствующим образом подготовить. В рамках этого этапа выполняется обработка кромок заготовочных элементов, создание защиты противоположных сторон (использование тех же подкладок), а также зачистка прутка присадки. Кроме этого, производится тщательная зачистка наружного слоя заготовки. Его частицы в ходе сварки могут проникнуть в структуру шва, из-за чего он станет хрупким и непригодным к работе в ответственных механических конструкциях. В случаях обработки толстых деталей от 5 см требуется разделка кромок, при которой угол раскроя должен составлять 60°. Если планируется сварка титана и его сплавов, которые до этого подвергались плазменной или газовой резке, то потребуется и зачистка поверхностей швов с ликвидацией слоя толщиной в 3-4 мм. Универсальной мерой уже финальной подготовки перед работой будет устранение внешних загрязнений, масляных пленок и окислов. Для этой процедуры используются мелкозернистые абразивы, напильник и обезжиривание с растворителями. Затем оставшиеся следы зачистки удаляются сухой ветошью.

Общие сведения о способах сварки

Базовыми методами сварочной обработки титана можно назвать дуговой ручной и автоматический способы. Что касается оптимальных сред, то наиболее эффективными считается гелий и аргон. Но важно учитывать, что в первом случае требуется включение в среду некислородного флюса. Также распространен метод электрошлаковой сварки. Его обычно используют в работах с толстыми заготовками, требующими к тому же высокой термической накалки. При грамотной организации неплохой результат обеспечивает и контактная сварка. Данный процесс требует, в частности, устройства сбалансированной защиты газом. Если применять в работе подкладки, то обеспечится высококачественная сварка титана. Технология плавления, например, подразумевает организацию специальной защиты оборотной части заготовки с помощью аргоновых газов. В свою очередь подкладка может обеспечить этой стороне дополнительное предохранение в условиях повышенной температурной нагрузки, об опасностях которой говорилось выше.

холодная сварка титан

Свойства материала

Титан обладает несколькими особыми качествами,  которые и осложняют процесс сваривания данного металла. К ним относят:

  • невысокая степень теплопроводности;
  • металл имеет склонность к самовозгоранию при нагревании до 400 градусов Цельсия, а также при контакте с кислородом;
  • окисляется под влиянием углекислоты;
  • при нагревании до 600 градусов Цельсия происходит образование нитридных соединений. Также данные соединения образуются при контакте с азотом, при этом они имеют твердую, но сильно хрупкую структуру;
  • обладают склонностью к поглощению водорода при нагревании до 250 градусов Цельсия;
  • при нагревании выше 800 градусов происходит изменение структуры (увеличение размеров зерна).

Критическими показателями температуры для титанового металла являются выше 400-500 градусов Цельсия. При разогревании до этого уровня у него отмечается повышение химической активности. Во время него титан взаимодействует с атмосферным воздухом, которое может оказать негативное воздействие на сварное соединение.

Дополнительно могут появиться вредные примеси —  гидриды, нитриды, карбиды и другие, которые могут снизить прочность шва. Если будет нарушена технология сварки титана, а также не будут соблюдаться правила и требования по ГОСТу, то это может привести к тому, что сварной шов развалится даже после небольшого удара.

Если процесс сваривания выполняется согласно установленным нормативам, то показатель прочности шва будет находиться на уровне от 0,6-0,8 от прочности свариваемого металла.

Общая технология сварки аргоном

При сварке деталей из титановых сплавов нужно помнить, что к ним применимы не все технологии, распространенные на производстве. Причиной является особая активность металла. При попадании в зону обработки оксидов, нитридов или карбидов качество сварного шва снижается. Другая причина – высокая температура. При 880°С свойства сплавов резко меняются. Они приобретают чувствительность к скорости охлаждения и крупнозернистость.

На качестве сварки сказываются:

  • низкая теплопроводность;
  • способность к самовозгоранию;
  • окисление при воздействии углекислоты;
  • образование нитридных соединений;
  • поглощение водорода.

Хорошее соединение можно получить только при аргонодуговой сварке титана. Процесс работы представляет много сложностей. Критичная для металла температура – выше 400-500°С. Шов может не выдержать ударов. При проведении работ с соблюдением всех требований технологии сварки титана и его сплавов в среде аргона прочность шва равняется 0,6-0,8.
Технология сварки

Как правильно подготовить детали для сварки титана аргоном

Сварка титана аргоном проводится при полной изоляции свариваемых поверхностей от атмосферы, поэтому чаще всего применяются автоматическая или полуавтоматическая технология.

Безусловно, ручная сварка этого металла возможна, но для нее используется специальная горелка с керамическим соплом: через нее под давлением подается инертный газ, аргон, который вытесняет воздух.

На схеме показаны приспособления для защиты шва газом и его подачи в повышенном объеме.

Приспособления для защиты шва газом

Перед сваркой титана аргоном подготавливают кромки и присадки, поэтому также приводим таблицу разделки кромок.

Таблица разделки кромок

Необходимо зачистить металлические поверхности стальной щеткой, «шкуркой», обезжирить.

Одним из самых распространенных растворителей для обезжиривания металлических поверхностей является ацетон, но у него резкий запах, он довольно токсичен. Об этом говорит тот факт, что ацетон относится к 4 классу опасности. При вдыхании в течение небольших отрезков времени его умеренных и высоких концентраций появляется раздражение глаз, дыхательных путей, повышенная частота пульса, головные боли, тошнота, рвота и даже возможна клиническая кома.

Рекомендуем статьи по металлообработке

  • Марки сталей: классификация и расшифровка
  • Марки алюминия и области их применения
  • Дефекты металлический изделий: причины и методика поиска

Поэтому стоит выбирать более безопасные, но эффективные составы для очищения поверхности металла. Один из вариантов – денатурированный спирт, его наносят на металл безворсовой тканью. Это спирт с добавками, из-за которых его употребление в пищу становится невозможным. С одной стороны, они имеют ужасный вкус, а с другой – вызывают рвоту, и даже могут стать причиной слепоты.

Перед соединением детали из титана подвергают травлению смесью соляной кислоты с водой и фторидом натрия в следующей пропорции: 350 мл HCl, 650 мл дистиллированной воды, 50 г фторида натрия. На травление уходит около 10 минут при 60 – 65 °C.

Еще один способ, позволяющий удалить оксидную пленку – это смесь из 2 – 4 % фтористоводородной кислоты и 30 – 40% азотной кислоты. Травление длится 30 секунд, а температура не превышает 60 °C.

После этого металл тщательно шлифуют при помощи наждачной бумаги до № 12, проволочных щеток, шабер. Важно убедиться, что получились ровные края деталей без заусенец и трещин. Аналогично зачищается и присадочная проволока для сварки титана аргоном. Далее пора переходить к сварке.

Работа в среде защитного газа аргона ведется с помощью присадочных материалов. Последние делятся на группы по составу (палладий, ванадий, алюминий) и содержащейся в них доле кислорода. В таблице есть характеристики присадок из титана и его сплава:

Таблица характеристик присадок из титана и его сплава

Очень важно, чтобы прутки и проволока при сварке титана не выходили из-под газовой защиты, так как присадки загрязняются на воздухе.

Аргонодуговая технология требует применения постоянного тока прямой полярности и вольфрамовых электродов. Иногда приходится использовать специальные приспособления, в которые поступает инертный газ, вытесняя воздух.

Возможна сварка титана аргоном при помощи медных, стальных подкладок. В них делают отверстия для подачи газа.

Для соединения труб используют специальные фартуки с разным закруглением, чьи характеристики определяются диаметром трубы.

Полуавтоматическую или автоматическую технологии осуществляют в специальной капсуле, заполненной аргоном либо гелием. Если речь идет о трубах, их не помещают в защитную среду, а герметизируют и заполняют аргоном.

Еще одно немаловажное требование к такой работе – это наличие перчаток на руках, ведь даже чистые руки оставляют на кромке потожировые следы. Последние негативно сказываются на качестве сварного шва.

Электронно-лучевая сварка

Электронно-лучевая сварка титана считается одним из популярных способов соединения изделий. При этом сваривание позволяет получить прочное и качественное соединение. Данный процесс основан на применении тепла, которое выделяется при торможении остросфокусированного пучка частиц, ускоренных до показателей высокой энергии.

Главным компонентом, при помощи которого выполняется сварка конструкций из титана, является луч, выделяемый специальным устройством — электронной пушкой. Питание пушки осуществляется при помощи высоковольтного источника постоянного тока.

Процесс обычно происходит в условиях вакуума, который защищает от негативных внешних условий. На заводах и предприятиях имеется специальная камера для сварки титана, которая защищает металл от взаимодействия с атмосферной средой и снижает потерю кинетической энергии электронов.

Adblock
detector