Углеродистая сталь: состав, свойства, применение, ГОСТ

Содержание
  1. Что собой представляют углеродистые стали
  2. Классификация по степени раскисления
  3. Сталь углеродистая: состав, свойства, ГОСТ, назначение, применение :
  4. Определение
  5. Структура сплава
  6. Способы производства
  7. Химические компоненты
  8. Виды термической обработки
  9. Дифференциация по назначению
  10. Химикотермическое воздействие
  11. Виды углеродистых сталей по содержанию углерода
  12. Низкоуглеродистые стали с содержанием углерода до 0,25%
  13. Среднеуглеродистые стали с содержанием углерода от 0,2% до 0,6%
  14. Высокоуглеродистые стали с содержанием углерода от 0,6% до 2%
  15. Свойства металла (стали) с разным содержанием углерода
  16. Конструкционные стали
  17. Инструментальные стали
  18. Методы производства и разделение по качеству
  19. Влияние углерода и примесей на свойства стали
  20. Основные свойства стали
  21. Механические
  22. Физические
  23. Химические
  24. Технологические
  25. Область применения

Что собой представляют углеродистые стали

Углеродистые стали, которые в зависимости от основной сферы применения подразделяются на конструкционные и инструментальные, практически не содержат в своем составе легирующих добавок. От обычных стальных сплавов эти стали также отличает и то, что в их составе содержится значительно меньшее количество таких базовых примесей, как марганец, магний и кремний.

Содержание основного элемента – углерода – в сталях данной категории может варьироваться в достаточно широких пределах. Так, высокоуглеродистая сталь содержит в своем составе 0,6–2% углерода, среднеуглеродистые стали – 0,3–0,6%, низкоуглеродистые – до 0,25%. Данный элемент определяет не только свойства углеродистых сталей, но и их структуру. Так, внутренняя структура стальных сплавов, содержащих в своем составе менее 0,8% углерода, состоит преимущественно из феррита и перлита, при увеличении концентрации углерода начинает формироваться вторичный цементит.

Нормы содержания химических элементов в углеродистых сталях

Углеродистые стали с преобладающей ферритной структурой отличаются высокой пластичностью и низкой прочностью. Если же в структуре стали преобладает цементит, то она характеризуется высокой прочностью, но вместе с этим является и очень хрупкой. При увеличении количества углерода до 0,8–1% прочностные характеристики и твердость углеродистой стали возрастают, но значительно ухудшаются ее пластичность и вязкость.

Количественное содержание углерода также оказывает серьезное влияние на технологические характеристики металла, в частности на его свариваемость, легкость обработки давлением и резанием. Из сталей, относящихся к категории низкоуглеродистых, изготавливают детали и конструкции, которые не будут подвергаться значительным нагрузкам в процессе эксплуатации. Характеристики, которыми обладают среднеуглеродистые стали, делают их основным конструкционным материалом, используемым в производстве конструкций и деталей для нужд общего и транспортного машиностроения. Высокоуглеродистые стальные сплавы благодаря своим характеристикам оптимально подходят для изготовления деталей, к которым предъявляются повышенные требования по износостойкости, для производства ударно-штампового и измерительного инструмента.

Химический состав углеродистых сталей обыкновенного качества

Химический состав углеродистых сталей обыкновенного качества

Углеродистая сталь, как и стальной сплав любой другой категории, содержит в своем составе различные примеси: кремний, марганец, фосфор, серу, азот, кислород и водород. Часть этих примесей, такие как марганец и кремний, являются полезными, их вводят в состав стали на стадии ее выплавки для того, чтобы обеспечить ее раскисление. Сера и фосфор – это вредные примеси, которые ухудшают качественные характеристики стального сплава.

Хотя считается, что углеродистые и легированные стали несовместимы, для улучшения их физико-механических и технологических характеристик может выполняться микролегирование. Для этого в углеродистую сталь вводятся различные добавки: бор, титан, цирконий, редкоземельные элементы. Конечно, при помощи таких добавок не получится сделать из углеродистой стали нержавейку, но заметно улучшить свойства металла они вполне могут.

Классификация по степени раскисления

На разделение углеродистых сталей на различные типы оказывает влияние в том числе такой параметр, как степень раскисления. В зависимости от данного параметра углеродистые стальные сплавы делятся на спокойные, полуспокойные и кипящие.

Более однородной внутренней структурой отличаются спокойные стали, раскисление которых осуществляют, добавляя в расплавленный металл ферросилиций, ферромарганец и алюминий. За счет того, что сплавы данной категории были полностью раскислены в печи, в их составе не содержится закиси железа. Остаточный алюминий, который препятствует росту зерна, наделяет такие стали мелкозернистой структурой. Сочетание мелкозернистой структуры и практически полное отсутствие растворенных газов позволяет формировать качественный металл, из которого можно изготавливать наиболее ответственные детали и конструкции. Наряду со всеми своими достоинствами углеродистые стальные сплавы спокойной категории имеют и один существенный недостаток – их выплавка обходится достаточно дорого.

Строение стального слитка зависит от степени раскисленности стали

Строение стального слитка зависит от степени раскисленности стали

Более дешевыми, но и менее качественными являются кипящие углеродистые сплавы, при выплавке которых используется минимальное количество специальных добавок. Во внутренней структуре такой стали из-за того, что процесс ее раскисления в печи не был доведен до конца, присутствуют растворенные газы, которые негативно отражаются на характеристиках металла. Так, азот, содержащийся в составе таких сталей, плохо влияет на их свариваемость, провоцируя образование трещин в области сварного шва. Развитая ликвация в структуре этих стальных сплавов приводит к тому, что металлический прокат, который из них изготовлен, имеет неоднородность как по своей структуре, так и по механическим характеристикам.

Промежуточное положение и по своим свойствам, и по степени раскисления занимают полуспокойные стали. Перед заливкой в изложницы в их состав вводят небольшое количество раскислитилей, благодаря чему металл затвердевает практически без кипения, но процесс выделения газов в нем продолжается. В итоге формируется отливка, в структуре которой содержится меньше газовых пузырей, чем в кипящих сталях. Такие внутренние поры в процессе последующей прокатки металла практически полностью завариваются. Большая часть полуспокойных углеродистых сталей используется в качестве конструкционных материалов.

Сталь углеродистая: состав, свойства, ГОСТ, назначение, применение :

В наше время просто невозможно представить себе деятельность человека без использования продукции металлургической отрасли. Различные металлы и сплавы буквально заполонили нашу жизнь.

Не стала исключением и сталь углеродистая, которая нашла свое активное применение практически во всех отраслях и сферах народного хозяйства.

О ее свойствах, назначении и составе пойдет речь в данной статье.

Определение

Итак, в первую очередь укажем, что сталь углеродистая – сплав железа с углеродом.

При этом содержание последнего элемента должно быть не более 2,14% . Отдельно стоит рассмотреть классификацию.

Такая сталь может быть разделена по:

  • структуре;
  • способу получения;
  • степени раскисления;
  • качеству;
  • назначению.

Обо всем этом будет сказано ниже.

Структура сплава

Сталь углеродистая бывает:

  • доэвтектоидная (содержание углерода составляет менее 0,8%);
  • эвтектоидная (углерод имеет концентрацию 0,8%);
  • заэвтектоидная (углерода более 0,8%).

Такая градация позволяет определять свойства углеродистой стали.

Способы производства

Абсолютно любая сталь изначально в своей основе имеет чугун, который впоследствии перерабатывают по особой технологии. Сталь углеродистая может быть создана тремя основными методами:

  • конверторной плавкой;
  • мартеновской плавкой;
  • электротермической обработкой.

Получение стали в конвертере происходит благодаря продуванию расплавленного чугуна кислородом под давлением.

Сам по себе конвертер – печь грушевидной формы, футерованная изнутри специальным огнеупорным кирпичом.

В зависимости от того, какая кладка (динас SiO2 или доломитная масса CaO и MgO) находится внутри конвертера, идет разделение этого способа на бессемеровский и томасовский.

Приготовление стали в мартеновской печи сводится к выжиганию углерода из чугуна кислородом, находящимся не только в воздухе, но и в оксидах железа, которые попадают в печь в виде металлолома и железной руды.

Мартеновский способ, в отличие от конверторного, предусматривает регулирование химического состава готового продукта на выходе путем внедрения металлических компонентов в требуемой пропорции.

К сожалению, несмотря на свои достоинства, мартеновский способ получения стали сегодня уже неактуален по причине своей технологической отсталости и слишком большого количества вредных выбросов в окружающую среду.

В электротермических печах производится сталь самого высокого качества. Это возможно благодаря тому, что воздух в печь извне практически не поступает.

За счет этого вредоносный монооксид железа почти не образуется, а именно он снижает свойства стали и загрязняет ее.

Кроме того, температура в печи не опускается ниже 1650 °C, что, в свою очередь, позволяет удалять нежелательные примеси в виде фосфора и серы.

Шихта для таких печей бывает различной: чугун может преобладать по количеству, но иногда большую часть составляет металлический лом.

Также есть возможность легирования стали очень тугоплавкими материалами – вольфрамом и молибденом.

Пожалуй, единственным существенным недостатком такого метода производства стали можно считать его энергоемкость, поскольку на одну тонну выплавляемой массы может приходиться до 800 кВт/ч.

Химические компоненты

Состав углеродистой стали стоит рассмотреть более детально. Первоочередно укажем на углерод.

Именно этот элемент оказывает прямое влияние на прочность и твердость стали: чем его больше, тем выше названные характеристики, пластичность же при этом снижается.

Марганец и кремний не являются теми составляющими, которые оказывают существенное влияние на свойства стали. В процессе плавки они вводятся с целью раскиления.

Крайне вредной примесью считается сера. Из-за нее сталь становится ломкой во время ее обработки давлением с предварительным подогревом. Также сера снижает прочность, стойкость к износу и коррозии.

Фосфор приводит к возникновению хладноломкости – хрупкости при низких температурах.

Феррит привносит в сталь мягкую и пластичную микроструктуру. Его антиподом является цементит – карбид железа, наращивающий твердость.

Виды термической обработки

Углеродистые стали, применение которых возможно почти везде, где человек осуществляет свою жизнедеятельность, способны существенно изменять свои механические свойства.

Для этого следует выполнить термическую обработку, смысл которой заключается в изменении структуры стали во время нагрева, выдержке и последующем охлаждении на основании специального режима.

Существуют такие виды температурной обработки:

  • Отжиг – снижает твердость и измельчает зерна, повышает обрабатываемость, вязкость и пластичность, снижает внутренние напряжения, устраняет структурные неоднородности.
  • Нормализация – исправляет структуру перегретой и литой стали, устраняет сетку вторичного цементита в заэвтектоидной стали.
  • Закалка – позволяет получить высочайшую твердость и прочность.
  • Отпуск.

Дифференциация по назначению

Сталь углеродистая делится на две большие группы:

  • инструментальная;
  • конструкционная (выделяют обыкновенные, качественные и автоматные разновидности).

Обыкновенные стали маркируются буквами «Ст» и номером от 0 до 6.

Все стали с номером марки от 1 до 4 производят кипящими, полуспокойными и спокойными.

Номера 5 и 6 могут быть только спокойными или полуспокойными. Кроме того, эти стали делятся на три большие группы: А, Б, В.

  • Группа А. Чем выше номер в маркировке стали, тем больше прочность.
  • Группа Б. С увеличением номера повышается содержание углерода.
  • Группа В. Механические свойства соответствуют группе А, химический состав – группе Б аналогичного номера.

Наиболее часто в строительстве применяются типы Ст1 и Ст2. Именно эти марки задействованы при создании резервуаров, трубопроводов, колонн.

Ст3 и Ст 4 актуальны для возведения конструкций, а также из них производится арматура для железобетона.

Углеродистая сталь ГОСТ 380-2005 является основой для листового, круглого, двутаврового и швеллерного проката.

Качественные стали характеризуются дешевизной и качественностью.

Маркируют их следующим образом: от 08 до 85 с приставкой в конце «ПС» (полуспокойная), «СП» (спокойная), «КП» (кипящая).

Цифра показывают концентрацию углерода в сотых долях процента.

Инструментальные стали применяют для изготовления трех основных групп инструмента: режущего, измерительного, штампованного. Цифры в маркировке сигнализируют о содержании углерода в десятых долях процента.

Химикотермическое воздействие

Углеродистые и легированные стали могут быть подвержены специальным видам обработки.

Одним из них является цементация – процесс, представляющий собой диффузионное насыщение поверхностного слоя стали углеродом при нагреве в соответствующей среде.

Конечной целью операции является получение высокой поверхностной твердости и износостойкости при вязкой сердцевине.

Цементация также может происходить в твердом карбюрюзаторе, который является смесью древесного угля и углекислых солей.

Азотирование стали – процесс, заключающийся в диффузионном насыщении поверхностного слоя стали азотом.

Данную процедуру проводят в атмосфере аммиака при температуре в пределах 500-700 градусов Цельсия.

Азотирование проводят для получения поверхности детали, устойчивой к износу и коррозии и обладающей большой твердостью.

Борирование – верхний слой стали насыщают бором. Делается это для повышения износостойкости, жаростойкости и твердости.

Также для получения жаростойких поверхностей применяют алитирование – насыщение стали алюминием.

Виды углеродистых сталей по содержанию углерода

Углерод – основной элемент углеродистой стали, и его содержание в сплаве может варьироваться в достаточно широких пределах: от 0,25% до 2%.

Низкоуглеродистые стали с содержанием углерода до 0,25%

Большая часть низкоуглеродистой стали выпускается в виде холоднокатаных и отожжённых полос и листов. Её свойства варьируются в зависимости от содержания основных химических элементов:

  • C до 0,1%, Mn менее 0,4%. Материал обладает высокой способностью к горячей деформации и холодному волочению. Используется при производстве проволоки, очень тонких листов, тары и корпусов автомобилей.
  • C от 0,1% до 0,25%. Такой материал более прочен и твёрд, чем описанный выше, а его способность к деформации ниже. Часто применяется для производства деталей с цементируемым поверхностным слоем.
  • C около 0,25%, Mn и Al до 1,5%. Материал с высокой вязкостью. Подходит для металлов, предназначенных для ковки, штамповки, производства бесшовного трубного проката и листа для котлов.
  • C около 0,15%, Mn менее 1,2%, Pb до 0,3% (или без него), минимальное количество Si. Применяется в массовом производстве на автоматических линиях деталей, которые не предназначены для восприятия серьёзных механических и температурных нагрузок.

Среднеуглеродистые стали с содержанием углерода от 0,2% до 0,6%

Обычно в среднеуглеродистых видах стали содержание марганца находится на уровне 0,6-1,65%. Они подходят для производства продукции, которая будет эксплуатироваться при высоких нагрузках. Могут подвергаться ковке. Подходят для машиностроения.

Высокоуглеродистые стали с содержанием углерода от 0,6% до 2%

С повышением количества углерода до 1% высокоуглеродистая сталь становится более прочной и твёрдой, одновременно снижаются пределы её текучести и пластичности. Дальнейшее увеличение углерода более 1% приводит к началу формирования грубой сетки из вторичного мартенсита, что снижает прочность материала.

Высокоуглеродистая сталь отличается высокой себестоимостью, низкой пластичностью и плохой свариваемостью. Такой материал имеет ограниченную область применения – его применяют для производства режущего инструмента, высокопрочной проволоки.

Свойства металла (стали) с разным содержанием углерода

Говоря о том, что такое углерод в металле, важно понимать, что свойства углеродистых сталей определяются сложным молекулярным строением. Структура цементита такова, что каждая ее ячейка имеет форму октаэдра.

Углерод в металле

Данная особенность обеспечивает ряд таких важных технико-экономических показателей сплавов, как:

  • высокая прочность, несущая способность;
  • твердый поверхностный слой в сочетании с мягкой сердцевиной, что объясняется плохой прокаливаемостью – данная характеристика компенсирует хрупкость металла;
  • большой срок службы, достигающий 50 лет при нормальных условиях, либо применении средств, призванных защитить материал от появления очагов ржавчины;
  • низкая стоимость технологии выплавки, которая используется с конца XIX века – именно тогда были созданы мартеновские печи.

От количества углерода в металле зависит определенный вид стали:

  • Низкоуглеродистая сталь имеет в составе до 0,25 % данного компонента, отличается пластичностью, однако легко поддается деформации. Такой металл может обрабатываться в холодном виде либо при высоких температурах.
  • Среднеуглеродистая сталь содержит 0,3–0,6 % углерода, является пластичной, текучей, имеет средний уровень прочности. Данный процент углерода в металле позволяет использовать его как материал для деталей и конструкции, эксплуатируемых в нормальных условиях.
  • Высокоуглеродистая сталь предполагает долю углерода в 0,6–2 %. Отличается хорошей стойкостью к износу, низкой вязкостью, а также она прочная и дорогостоящая. Для проведения сварных работ металл необходимо предварительного разогреть до +225 °C.

Стоит отметить, что первые два вида проще поддаются обработке, свариванию.

Каждая марка стали имеет свою сферу применения и отличается от других методом изготовления:

Конструкционные стали

Обладают большой долей углерода в металле, для их производства используются мартеновские печи и специальные конвертеры. В маркировке конструкционных сталей применяют первые три буквы алфавита и цифры. По буквам можно определить принадлежность сплава к определенной группе, тогда как цифровое значение говорит о количестве углерода.

Если в металле присутствует марганец, обозначение дополняется буквой «Г». Группа А разделяет сплавы по механическим характеристиками, Б – по доле примесей, В – сразу по двум показателям. Так, при производстве группы А отталкиваются от необходимых качеств, тогда как в группе Б опираются на соответствие нормам.

Инструментальные стали

Производят в мартеновской или электрической печи, которая стала наиболее распространена в последнее время. Марки сплава имеют различную вязкость, степень раскисления. Кроме того, среди инструментальных сталей принято выделять качественные и высококачественные.

Методы производства и разделение по качеству

Для производства углеродистых сталей используются различные технологии, что сказывается на их разделении не только по способу производства, но и по качественным характеристикам. Так, различают:

  • высококачественные стальные сплавы;
  • качественные углеродистые стали;
  • углеродистые стальные сплавы обыкновенного качества.

Классификация углеродистых сталей

Классификация углеродистых сталей

Стальные сплавы, обладающие обыкновенным качеством, выплавляются в мартеновских печах, после чего из них формируют слитки больших размеров. К плавильному оборудованию, которое используется для получения таких сталей, относятся также кислородные конвертеры. По сравнению с качественными стальными сплавами, рассматриваемые стали могут иметь большее содержание вредных примесей, что сказывается на стоимости их производства, а также на их характеристиках.

Сформированные и полностью застывшие слитки металла подвергают дальнейшей прокатке, которая может выполняться в горячем или холодном состоянии. Методом горячей прокатки производят фасонные и сортовые изделия, толстолистовой и тонколистовой металл, металлические полосы большой ширины. При помощи прокатки, выполняемой в холодном состоянии, получают тонколистовой металл.

На современных предприятиях для производства высококачественных сплавов используются электрические дуговые печи

На современных предприятиях для производства высококачественных сплавов используются электрические дуговые печи

Для производства углеродистых сталей качественной и высококачественной категорий могут использоваться как конвертеры и мартеновские печи, так и более современное оборудование – плавильные печи, работающие на электричестве. К химическому составу таких сталей, наличию в их структуре вредных и неметаллических примесей соответствующий ГОСТ предъявляет очень жесткие требования. Например, в сталях, которые относятся к категории высококачественных, должно содержаться не более 0,04% серы и не больше 0,035% фосфора. Качественные и высококачественные стальные сплавы благодаря строгим требованиям к способу их производства и к характеристикам отличаются повышенной чистотой структуры.

Влияние углерода и примесей на свойства стали

Железо — серебристо-серый металл, принадлежащий к VIII группе периодической системы, имеет температуру плавления 1536ºС. Чистое лабораторное железо содержит не более 0,0001% (или 10-4%) примесей, технически чистое — около 0,1-0,15% примесей. Прочность технического железа невелика: σв = 250МПа при довольно высокой пластичности δ = 50% , ψ = 80%.

Железо в твердом состоянии может находиться в двух полиморфных модификациях: с ОЦК решеткой и ГЦК решеткой. Ниже 911°С и выше 1392°С устойчиво α -железо с ОЦК решеткой (обозначается Feα). Высокотемпературную модификацию (выше 1392°С) α-железа иногда называют δ-железом, хотя оно не представляет собой новой кристаллической фазы.

В интервале температур 911-1392°Сжелезо имеет модификацию γ-железо с ГЦК решеткой(обозначается Feγ ).

Кривая охлаждения железа фиксирует два полиморфных и одномагнитное превращение (рис.7.1). При магнитном превращении температурная остановка при 768°С (точка Кюри) связана не с перестройкой кристаллической решетки, а с внутриатомными изменениями внешних и внутренних электронных оболочек, которые и приводят к изменениям магнитных свойств.

Углерод принадлежит к IV группе периодической системы. Углерод встречается в природе в виде двух основных модификаций: алмаза и графита. Температура плавления графита 3500°С. Графит имеет гексагональную кристаллическую решетку. Графит — мягкий материал и обладает низкой прочностью. Прочность графита с увеличением температуры аномально растет: при 20°С σв = 20МПа, при 2500°С графит прочнее всех тугоплавких металлов. На этом основаны современные методы создания сверхпрочных материалов, упрочненных углеродными волокнами и графитовыми включениями.

Рис.7.1. Кривая охлаждения железа.

Углерод образует с железом твердые растворы внедрения. Растворимость углерода в железе зависит от его кристаллической решетки. Диаметр поры кристаллической решетки ОЦК значительно меньше, чем диаметр поры решетки ГЦК. Поэтому α-Fe способно растворять углерод в очень малом количестве, а растворимость углерода в γ-Fe существенно больше. При взаимодействии в твердом состоянии железо и углерод могут образовывать различные структурные составляющие.

СТРУКТУРНЫЕ СОСТАВЛЯЮЩИЕ ЖЕЛЕЗОУГЛЕРОДИСТЫХ

СПЛАВОВ

К железоуглеродистым сплавам относятся стали и чугуны.

Сталь – сплав железа с углеродом при содержании углерода не более 2,14%.

Чугун – сплав железа с углеродом при содержании углерода от 2,14% до 6,67%.

Максимальное содержание углерода в железоуглеродистых сплавах составляет 6,67%.

В структуре сталей могут образовываться следующие составляющие: феррит, аустенит, цементит, перлит.

Аустенит — твердый раствор углерода в γ-Fe. Образуется из жидкости при первичной кристаллизации. Может присутствовать в структуре сталей только при высоких температурах (выше 727оС). Максимальная растворимость углерода в γ-Fe, следовательно максимальное содержание углерода в аустените 2,14% при 1147 оС. Аустенит имеет невысокую прочность и твердость и достаточно пластичен. Является однородной однофазной структурой. Обозначается буквой А.Формула аустенита Feγ (С).

Феррит – твердый раствор углерода в α-Fe. Образуется из аустенита при вторичной кристаллизации. Растворимость углерода в α-Fe при комнатной температуре равна 0,006%. Максимальная растворимость углерода в феррите, следовательно максимальное содержание углерода в феррите 0,02% при 727оС. Феррит является самой мягкой структурной составляющей. Имеет незначительную прочность и твердость, но высокую пластичность. В структуре проявляется в виде зерен правильной округлой формы. Является однородной однофазной структурой. Может присутствовать в структуре при комнатной температуре. Обозначается буквой Ф.Формула феррита Feα (С).

Цементит – химическое соединение железа и углерода. Формула цементита Fe3C.В цементите содержится 6,67% углерода. Температура плавления цементита около 1240 -1250 оС. Цементит имеет очень высокую твердость, но обладает при этом высокой хрупкостью и практически нулевой пластичностью. Цементит является самой твердойструктурной составляющей. Имеет пластинчатое строение. Является однофазной структурой. В сталях может образовываться только цементит вторичный. Обозначается буквой Ц II.

Перлит – механическая смесь феррита и цементита вторичного. Образуется из аустенита при температуре 727оС. Называется эвтектоидом (аналогично эвтектике, но образуется из твердой фазы). Перлит содержит 0,8% углерода. Является двухфазной структурой. Имеет пластинчатое строение (чередование пластин феррита и цементита), либо зернистое строение (после термической обработки). Может присутствовать в структуре при температурах ниже 727оС, вплоть до комнатной. Является основной структурной составляющей сталей. Есть в структуре всех сталей независимо от содержания углерода. Обозначается буквой П.Формула перлита

(Feα (С) + Fe3C ).

В структуре чугунов могут образовываться следующие структурные составляющие: аустенит (также как и в сталях образуется из жидкости при первичной кристаллизации), перлит (также как и в сталях образуется из аустенита при 727оС и может присутствовать при комнатной температуре), цементит первичный ( то же, что и в сталях, но образуется из жидкости при первичной кристаллизации, обозначается Ц I), ледебурит.

Ледебурит – механическая смесь аустенита и цементита первичного. Образуется из жидкости при первичной кристаллизации при температуре 1147 оС. Содержит 4,3% углерода. Является эвтектикой. Может присутствовать в структуре при температурах выше 727оС. Является двухфазной структурой. Обозначается буквой Л.

Ледебурит превращенный – механическая смесь перлита и цементита. Образуется из ледебурита первичного в результате превращения аустенита в перлит (в составе ледебурита) при температуре 727оС. Содержит также 4,3% углерода, является также эвтектикой и двухфазной структурой. Может присутствовать в структуре при температурах ниже 727оС. Обозначается буквой Лпр.

ДИАГРАММА СОСТОЯНИЯ ЖЕЛЕЗО – УГЛЕРОД

( ЖЕЛЕЗО – ЦЕМЕНТИТ)

Диаграмма состояния железо — цементит приведена на рис.7.2. Линия ABCD — линия ликвидус, линия АН JECF — солидус. Точка А соответствует температуре плавления железа (1536ºС), точка D — температуре плавления цементита (1250°С). Точки N и G соответствуют температурам полиморфного превращения железа (1392°С и 911°С ).

Рис.7.2. Диаграмма состояния железо-углерод.

В системе Fe-Fe3C при различных температурах происходят эвтектическое и эвтектоидное превращения. По линии ECF при 1147ºС происходит эвтектическое превращение: (А + ЦI). Образующаяся эвтектика называется ледебуритом. Ледебурит (Л) — механическая смесь аустенита и цементита первичного, содержащая 4,3 % углерода.

По линии PSK при 727°С происходит эвтектоидное превращение:

(Ф + Ц ), в результате которого из аустенита образуется механическая смесь феррита и цементита. Эвтектоидное превращение происходит аналогично кристаллизации эвтектики, но не из жидкости, а из твердого раствора. Образующийся эвтектоид называется перлитом. Перлит (П) — механическая смесь феррита и цементита, содержащая 0,8 % С. Перлит состоит из пластинок цементита в ферритной основе, на травленом шлифе имеет блеск перламутра, отсюда и название — перлит.

В результате первичной кристаллизации во всех сплавах с содержанием углерода менее 2,14% (в сталях) образуется однофазная структура – аустенит. В сплавах с содержанием углерода более 2,14% (в чугунах) при первичной кристаллизации образуются аустенит (по линии АВС), цементит первичный (по линии СD) и ледебурит первичный, эвтектика (по линии ECF).

Вторичная кристаллизация (превращения в твердом состоянии) происходит по линиям GSE и PSK. Образование феррита из аустенита по линии GS происходит вследствие полиморфного превращения γ в α. Образование цементита вторичного из аустенита по линии SE происходит вследствие изменения растворимости углерода в аустените. При понижении температуры по линии ES растворимость углерода уменьшается и происходит выделение цементита.

По линии PQ уменьшается растворимость углерода в феррите с понижением температуры. От максимального значения в точке P (0,02%) до точки Q (0,006%) при комнатной температуре. Избыточный углерод в очень малых количествах выделяется из феррита в виде цементита третичного. Такую структуру имеет технически чистое железо.

В точке S при содержании углерода 0,8% и температуре 727°С весь аустенит превращается в механическую смесь феррита и цементита вторичного (перлит). Такое превращение происходит по всей линии PSK, поэтому ее называют линией перлитного превращения.

Анализируя линии и точки диаграммы состояния железо – углерод можно определить структурные составляющие сталей и чугунов при любом содержании в них углерода и при определенной температуре.

Таким образом, диаграмма состояния железо – углерод имеет большое практическое значение. Ее применяют для назначения режимов термической обработки сталей определенного состава, для назначения режимов горячей механической обработки, для прогнозирования свойств стали по ее структуре в соответствии с диаграммой состояния.

УГЛЕРОДИСТЫЕ СТАЛИ

Сплавы железа с углеродом, содержащие до 2,14% С и малое количество других элементов (примеси), называются углеродистыми сталями.

Углеродистые стали выплавляются в электропечах, мартеновских печах и кислородных конвертерах. Считается, что наиболее высокими свойствами обладают стали более чистые по содержанию вредных примесей серы и фосфора, а также газов и неметаллических включений. Такие стали используются для изготовления наиболее ответственных деталей.

Влияние углерода и примесей на свойства стали

Углерод оказывает значительное влияние на свойства стали. Даже при малом изменении содержания углерода в стали, изменяются механические свойства. Увеличение содержания углерода в стали приводит к повышениюпрочности, твердости и понижению пластичности. Кроме того, увеличение содержания углерода повышает порог хладноломкости и уменьшает ударную вязкость. Зависимость механических свойств стали от содержания углерода приведена на рис.8.1.

Рис. 8.1. Влияние углерода на свойства стали.

С увеличением содержания углерода в структуре стали возрастает количество цементита. При содержании в стали углерода до 0,8% структура состоит из феррита и перлита, однако при увеличении содержания углерода в этих сталях соотношение феррита и перлита изменяется: ферритная составляющая уменьшается, количество перлита — возрастает. Так как в состав перлита входит цементит, то его количество также возрастает, что приводит к увеличению прочности и понижению пластичности. При содержании углерода более 0,8% в структуре сталей кроме перлита появляется структурно свободный вторичный цементит.

Как известно, феррит имеет низкую прочность, но сравнительно высокую пластичность. Цементит обладает высокой твердостью, но является хрупким.

Таким образом, изменение структуры стали при увеличении содержания углерода приводит к увеличению твердости, прочности и снижению вязкости и пластичности. Заметный рост прочности происходит при содержании углерода до 1,0%. При большем содержании углерода твердость продолжает расти, но прочность даже снижается за счет охрупчивания вследствие образования сетки хрупкого цементита вокруг перлитных зерен. Для устранения хрупкости сталей с высоким содержанием углерода используют специальную термическую обработку.

Также углерод оказывает влияние на технологические свойства стали: свариваемость, обрабатываемость давлением и резанием.

С увеличением содержания углерода ухудшается свариваемость. Считается оптимальным для возможности сварки содержание углерода до 0,22 — 0,25%. Кроме того, увеличение содержания углерода приводит к ухудшению деформации (механической обработки) в горячем и холодном состоянии.

Обрабатываемость резанием считается наиболее хорошей у стали с содержанием углерода 0,3 — 0,4%. Стали с меньшим содержанием углерода являются слишком вязкими. Кроме того, они дают плохую поверхность обработки и трудноудаляемую стружку. Высокоуглеродистые стали имеют повышенную твердость, что затрудняет их обрабатываемость.

В химическом составе стали всегда присутствуют постоянные примеси, к которым относятся: кремний, марганец, сера, фосфор, а также газы: кислород, азот, водород.

Обычно содержание примесей в процессе выплавки стали ограничивают. Особенно это относится к содержанию вредных примесей, таких как сера и фосфор. Так, количество этих элементов по верхнему пределу для неответственных сталей ограничивается не более 0,05%; для ответственных и специальных сталей — в тысячных долях %.

Сера снижает пластичность и вязкость сталей, а также приводит к явлению красноломкости в процессе горячей механической обработки. Фосфор, попадая в сталь, способен растворяться в феррите, при этом уменьшает его пластичность и способствует охрупчиванию стали.

Кислород, азот, водород находятся в стали либо в виде твердого раствора в феррите, либо могут образовывать химические соединения. Кислород и азот загрязняют сталь хрупкими, неметаллическими включениями, уменьшают вязкость и пластичность стали. Водород, находясь в твердом растворе, также сильно охрупчивает сталь. Повышенное содержание водорода приводит к образованию трещин – флокенов( «водородное охрупчивание»).

Марганец и кремний считаются полезными примесями. Их вводят в сталь специально в процессе выплавки для раскисления стали и связывания кислорода. Кроме того, марганец и кремний способны упрочнять составляющую феррита. Обычно в углеродистой стали присутствует до 0,8% марганца и до 0,4 — 0,5% кремния.

Основные свойства стали

При заказе материала нужно учитывать, какими свойствами должна обладать сталь, чтобы подойти под конкретную область применения. Если не понимать такой особенности, есть риск покупки сырья, не соответствующего прочности, уровню защиты от коррозии, качеству свариваемости и другим характеристикам.

Механические

Показывают, какие варианты обработки можно выбирать и где использовать. Есть несколько основных параметров:

  • Прочность. Показывает, какую нагрузку можно прикладывать к детали, пока не появятся первые признаки разрушения. Для каждой марки материала указывается этот параметр, а также предел текучести.
  • Предел прочности. Указывает на защищенность материала от механического напряжения.
  • Предел текучести. Дает представление о растягиваемости материала. Это помогает понимать, насколько сильно можно растянуть материал до момента, пока процесс будет продолжаться, даже когда нагрузка перестанет прикладываться.
  • Пластичность. Чтобы материал можно было использовать в изготовлении различных типов деталей и заготовок. Такая характеристика помогает сырью менять форму, прописывается, чтобы определить параметры относительного угла изгиба и удлинения.
  • Ударная вязкость. Напрямую связана с пределами динамических нагрузок. Характеристика указывает, насколько сильный удар сможет выдержать готовое изделие или заготовка, прежде чем начнет окончательно разрушаться.
  • Твердость. Показывает предельную нагрузку по площади до момента возникновения вдавливания. Может определяться разными методами, как Бринелля, так и Виккерса.

Физические

Параметры дают понять, возможно ли применение стали в строительстве или различных областях промышленности. Есть три значимых центральных показателя:

  • Плотность. В характеристике зашифровано, какая масса стали содержится в указанном объеме. Чем выше прочность, тем больше защищенность от деформации, сильного давления и других потенциальных угроз.
  • Теплопроводность. Параметр дает представление, насколько быстро тепло передается по заготовке. Параметр очень важен для промышленности, к примеру, при изготовлении радиаторов или труб для теплотрасс.
  • Электропроводность. Позволяет оценить безопасность применения материала в местах, где есть риск удара током. Также сплав можно выбрать и для установки в сферах, где имеют значение его проводниковые характеристики.

Химические

Весь набор параметров дает представление о том, как поведет себя материал в разных температурах или средах с разной степенью агрессивности. Есть четыре основных параметра:

  • Окисляемость. Процесс окисления вызывается контактом металла с кислородом, может стимулироваться увеличением температуры. На уровень окисляемости влияет содержание углерода и среда, в которой используются изделия. Чем больше подверженность окислению, тем быстрее на поверхности появится ржавчина.
  • Защищенность от коррозии. Указывается для разных сред. Может меняться при использовании на открытом воздухе, а также при контакте с водой или почвой.
  • Жаростойкость. Помогает понять, при каком нагреве на металле начинает постепенно развиваться коррозия. Характеристика напрямую связана с окисляемостью.
  • Жаропрочность. От жаростойкости отличается тем, что затрагивает не коррозийную стойкость и защиту от окалины, а саму прочность. Знание параметров поможет вам понять, до какой температуры нагреется заготовка, прежде чем ее можно будет сломать или деформировать.

Технологические

Показывают возможность обработки с применением различных технологий. Центральные параметры:

  • Ковкость. Чем она выше, тем быстрее можно будет придать форму постоянным внешним механическим воздействием.
  • Жидкотекучесть. Если этот параметр находится на высоком уровне, расплавленный материал сможет лучше заполнять пустоты.
  • Свариваемость. Помогает соединять различные заготовки между собой. Отличается как в зависимости от типа использованной сварки, так и самого сплава.
  • Обрабатываемость резанием. Сталь можно обрабатывать разными видами режущих инструментов для создания металлопроката и деталей с разными параметрами и областью применения.

Область применения

Как уже говорилось выше, углеродистые стальные сплавы по основному назначению делят на две большие категории: инструментальные и конструкционные. Инструментальные стальные сплавы, содержащие 0,65–1,32% углерода, используются в полном соответствии со своим названием – для производства инструмента различного назначения. Для того чтобы улучшить механические свойства инструментов, обращаются к такой технологической операции, как закалка углеродистой стали, которая выполняется без особых сложностей.

Сферы применения углеродистых инструментальных сталей

Сферы применения углеродистых инструментальных сталей

Конструкционные стальные сплавы применяются в современной промышленности очень широко. Из них делают детали для оборудования различного назначения, элементы конструкций машиностроительного и строительного назначения, крепежные детали и многое другое. В частности, такое популярное изделие, как проволока углеродистая, производится именно из стали конструкционного типа.

Используется проволока углеродистая не только в бытовых целях, для производства крепежа и в строительной сфере, но и для изготовления таких ответственных деталей, как пружины. После выполнения цементации конструкционные углеродистые сплавы можно успешно использовать для производства деталей, которые в процессе эксплуатации подвергаются серьезному поверхностному износу и испытывают значительные динамические нагрузки.

Конечно, углеродистые стальные сплавы не обладают многими свойствами легированных сталей (в частности, той же нержавейки), но их характеристик вполне хватает для того, чтобы обеспечить качество и надежность деталей и конструкций, которые из них изготавливаются.

Adblock
detector